Enhancing Exemplar SVMs using Part Level Transfer Regularization
نویسندگان
چکیده
Content based image retrieval (CBIR), the problem of searching digital images in large databases according to their visual content, is a well established research area in computer vision. In this work we are particularly interested in retrieving subwindows of images which are similar to the given query image, i.e. the goal is detection rather than image level classification. The notion of similarity is defined as being the same object class but also having similar viewpoint (e.g. frontal, left-facing, rear etc.). A query image can be a part of an object (e.g. head of a side facing horse), a complete object (e.g. frontal car image), or a composition of objects (visual phrases, e.g. person riding a horse). For instance, given a query of a horse facing left, the aim is to retrieve any left facing horse (intra-class variation) which might be walking or running with different feet formations (exemplar deformation).
منابع مشابه
Part level transfer regularization for enhancing exemplar SVMs
Exemplar SVMs (E-SVMs, Malisiewicz et al., ICCV 2011), where an SVM is trained with only a single positive sample, have found applications in the areas of object detection and content-based image retrieval (CBIR), amongst others. In this paper we introduce a method of part based transfer regularization that boosts the performance of E-SVMs, with a negligible additional cost. This enhanced E-SVM...
متن کاملExemplar-based Representations for Object Detection, Association and Beyond
Recognizing and reasoning about the objects found in an image is one of the key problems in computer vision. This thesis is based on the idea that in order to understand a novel object, it is often not enough to recognize the object category it belongs to (i.e., answering “What is this?”). We argue that a more meaningful interpretation can be obtained by linking the input object with a similar ...
متن کاملExemplar-SVMs for Action Recognition
This goal of this paper is to introduce a method for action recognition that significantly reduces the labeling process. The method involves training a separate linear support vector machine (SVM) classifier for each selected exemplar and combining the scores to form mid-level features. Our approach is trained and tested on the UCF Sports Action data set. The accuracies achieved by the combined...
متن کاملMulti-Task Multi-Sample Learning
In the exemplar SVM (E-SVM) approach of Malisiewicz et al., ICCV 2011, an ensemble of SVMs is learnt, with each SVM trained independently using only a single positive sample and all negative samples for the class. In this paper we develop a multi-sample learning (MSL) model which enables joint regularization of the E-SVMs without any additional cost over the original ensemble learning. The adva...
متن کاملOne-class SVM regularization path and comparison with alpha seeding
One-class support vector machines (1-SVMs) estimate the level set of the underlying density observed data. Aside the kernel selection issue, one difficulty concerns the choice of the ’level’ parameter. In this paper, following the work by Hastie et. al (2004), we derive the entire regularization path for ν-1-SVMs. Since this regularization path is efficient for building different level sets est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012